Volume do cilindro

Cilindro
Cilindro

O cilindro é um sólido geométrico classificado como corpo redondo por conter uma de suas faces arredondadas. Podemos observar a utilização do cilindro na indústria de embalagens, reservatórios de combustíveis e líquidos em geral. Em virtude da sua grande utilização no cotidiano, é importante conhecer seus elementos e saber realizar o cálculo de seu volume

 

Considere um cilindro circular reto de altura h e raio da base r. O volume do cilindro é obtido realizando o produto entre a área da base e a altura h. Ou seja,

V = (área da base) × (altura)

Como a base do cilindro é uma circunferência de raio r, temos que:

(área da base) =  π?r2

Sabemos que a altura do cilindro é h. Assim, a fórmula para o cálculo do volume do cilindro é dada por:

V = π?r2?h

Sendo
r → o raio da base.
h → a altura do cilindro.

Vejamos alguns exemplos de aplicação da fórmula do volume do cilindro.

Exemplo 1. Considere um cilindro circular reto de 8 cm de altura e raio da base medindo 5 cm. Determine a capacidade desse cilindro. (Utilize π = 3,14)

Solução: De acordo com o enunciado do problema, temos que:
h = 8 cm
r = 5 cm

Calcular a capacidade é o mesmo que determinar o volume do cilindro.

Utilizando a fórmula do volume, obtemos:

V = π?r2?h
V = 3,14 ? 52?8
V = 3,14 ? 25 ? 8
V = 628 cm3

Portanto, esse cilindro apresenta capacidade de 628 cm3.

Exemplo 2. Um reservatório de combustíveis apresenta o formato de um cilindro circular reto de 15 metros de diâmetro e 6 metros de altura. Determine a capacidade, em litros, desse reservatório. (Utilize π=3,14)

Não pare agora... Tem mais depois da publicidade ;)

Solução: Temos que:

r = d/2 = 15/2 = 7,5 m
h = 6 m

Utilizando a fórmula do volume, obtemos:

V = π?r2?h
V = 3,14 ? (7,5)2 ? 6
V = 3,14 ? 56,25 ? 6
V = 1059,75 m3

O exercício quer a capacidade em litros. Devemos lembrar que:

1dm3 = 1 litro ou 1m3 = 1000 litros

Assim, o volume, em litros, desse reservatório será de:

V = 1059,75 ? 1000 = 1.059.750 litros

Exemplo 3. Uma indústria de embalagens deseja fabricar uma lata de tinta cilíndrica com raio da base medindo 5 cm de comprimento e com capacidade para 1 litro. Qual deverá ser o comprimento da altura dessa embalagem? (Use π = 3,1)

Solução: De acordo com o problema, o volume desse cilindro deverá ser de 1 litro ou 1 dm3. Sabemos que o raio da base será de 5 cm, que equivale a 0,5 dm. Utilizando a fórmula do volume, teremos:

Portanto, a lata deverá ter uma altura de, aproximadamente, 13 cm.


 

Aproveite para conferir nossas videoaulas sobre o assunto:

Por: Marcelo Rigonatto

Artigos relacionados

Cilindro

Aprenda mais sobre o cilindro e as suas características. Veja também como calcular a área total e o volume desse corpo redondo.

Corpos redondos

Veja quais são as formas geométricas dos corpos redondos. Acesse e fique por dentro!

Dimensões do espaço

Clique para aprender o que são as dimensões do espaço, o que são objetos uni, bi e tridimensionais e obter alguns exemplos.

Paralelepípedos

Clique para aprender o que são paralelepípedos, suas classificações, as propriedades de alguns de seus elementos e o cálculo de suas diagonais.

Princípio de Cavalieri

Conheça o princípio de Cavalieri e entenda a sua importância no desenvolvimento de fórmulas para calcular o volume de sólidos geométricos.

Unidades de medida de volume

Amplie os seus estudos sobre as unidades de medida de volume conhecendo os seus múltiplos e submúltiplos.

Volume do cone

Saiba como calcular a capacidade de um cone

Volume do tronco de cone

Saiba como calcular o volume de um tronco de cone pela dedução de sua fórmula, ampliando seus conhecimentos sobre as características desse sólido geométrico.

Volume do tronco de pirâmide

Clique e aprenda a calcular o volume de um tronco de pirâmide.

Área do cilindro

Conheça a seguir tudo a respeito da área do cilindro: a definição de um cilindro, qual a fórmula de sua área lateral, área da base e área total, e seus cálculos.

Área do cone

Descubra como calcular as áreas total, lateral e da base de um cone com base nas medidas de sua geratriz e no raio do círculo de sua base.