3 macetes de Matemática para o Enem

 As provas de Matemática geralmente exigem que o estudante recorde-se de algum conhecimento específico para interpretar as questões. Alguns conseguem se sair bem nessa etapa de resolução, mas tem dificuldades em conceitos mais básicos, como multiplicação e divisão. Pensando nisso, reunimos três macetes matemáticos para facilitar os estudos e agilizar os cálculos nas questões do Enem.

Além disso, também existem aquelas fórmulas, propriedades e conceitos difíceis de memorizar. Dois deles serão citados adiante, mas adiantamos que formas criativas de memorização, como uma música, poesia, mapa mental etc., funcionam e recomendamos a utilização delas.

Leia também: Dicas de Matemática para o Enem

Tópicos deste artigo

Primeiro macete: Multiplicação

O primeiro macete envolve multiplicação e não será possível ser mais breve do que seremos nos próximos parágrafos.

  • Multiplicação por potências de 10

Lembre-se de que as potências de 10 são 100 = 102, 1000 = 103...

Sempre que um número for multiplicado por uma potência de 10, utilizaremos um dos dois raciocínios a seguir:

1. Se for um número decimal, a vírgula andará n casas para a direita (n é o número de zeros da potência de 10 ou o expoente dessa potência). Observe que, se sobrarem casas não preenchidas nesse processo, deveremos ocupá-las com zeros. Por exemplo:

1000·2,2 = 2200,0 ou 2200

Note que a vírgula andou três casas para a direita, deixando alguns espaços desocupados, que foram preenchidos com zeros.

2. Se não for um número decimal, ao final dele, adicione n zeros (n é o número de zeros da potência de 10 ou seu expoente). Por exemplo:

10000·45 = 450000

Sem realizar cálculo algum, descobrimos o resultado, pois colocamos os zeros de 10000 ao final de 45.

Não pare agora... Tem mais depois da publicidade ;)
  • Multiplicação por múltiplos de 10

Para resolvê-la, proceda da seguinte maneira: repare que, ao final, todo múltiplo de 10 possui alguns zeros. Ignore-os na multiplicação e coloque-os no resultado final, seguindo o raciocínio do macete anterior. Observe o exemplo:

235·45000

235·45 = 10575

Logo: 235000·45 = 10575000

  • Propriedades da multiplicação

Existe uma propriedade da multiplicação que facilita tanto os cálculos que, após algum tempo, é utilizada para efetuar multiplicações de cabeça: a propriedade distributiva da multiplicação.

Para usá-la, lembre-se de que todo número maior que 1 pode ser decomposto em uma soma de números inteiros. Por exemplo, 22 = 20 + 2. Ora, não é mais fácil multiplicar um número qualquer por 2 e por 20 (utilizando o primeiro macete) do que por 22? Observe:

205·22 = 205·(20 + 2)

205·20 = 4100

205·2 = 410, então:

205·22 = 205·(20 + 2) = 4100 + 410 = 4510

Veja também: Temas de matemática que mais caem no Enem

Macetes matemáticos podem fazer toda diferença ao resolver as questões do Enem.
Macetes matemáticos podem fazer toda diferença ao resolver as questões do Enem.

Segundo macete: Áreas

Quase todas as áreas de figuras geométricas baseiam-se na área do paralelogramo. Assim, para ajudar a memorizar as fórmulas, tente lembrar a área dessa figura geométrica, que é:

A = b·h
b: base
h: altura

A área do quadrado é exatamente igual a essa, mas às vezes aparece com outra forma, em razão de o quadrado possuir todos os lados iguais. Desse modo, sua altura será igual a l, assim como sua base. Segue que a área do quadrado é:

A = l·l = l2

A área do triângulo sempre será metade da área do paralelogramo, pois todo triângulo é exatamente metade de um paralelogramo. Logo, a sua área poderá ser obtida pela divisão da área do paralelogramo por 2:

A = b·h
2

A área do trapézio, por sua vez, é obtida pela soma de suas bases, mas a fórmula é igual à da área do triângulo. Pense no trapézio como sendo um corte de um triângulo ou um triângulo com duas bases (embora esse último não exista). A fórmula da área do trapézio é a seguinte:

A = (B + b)·h
2

Terceiro macete: Trigonometria

Pensando naqueles que sempre se esquecem da tabela dos valores de seno, cosseno e tangente dos ângulos notáveis, vamos construí-la de uma forma diferente. Veja a canção (infelizmente não podemos cantar) seguinte:

um, dois, três.

Três, dois, um.

Tudo sobre dois,

só não tem raiz o um

Agora, construindo a tabela enquanto cantamos:

Um, dois, três. Três, dois, um”:

Tudo sobre dois”:

“Só não tem raiz o um”:

A tangente, por sua vez, é resultado da divisão de seno por cosseno. Para encontrar seus valores, lembre-se de que, na divisão de frações, multiplicamos a primeira pelo inverso da segunda. Se necessário, fazemos a racionalização do resultado. 

Por: Luiz Paulo Moreira Silva

Artigos relacionados

Análise combinatória no Enem

Saiba o que é análise combinatória, entenda como esse conteúdo é cobrado no Enem e veja questões de exames passados sobre o tema.

Brasil Império nas questões do Enem

Saiba de que modo aparece o tema do Brasil Império nas questões do Enem e como se deve interpretá-las, de acordo com as competências exigidas no Exame.

Cinco conceitos ecológicos que não se deve confundir no Enem

Clique aqui e veja cinco conceitos ecológicos que não se deve confundir no Enem!

Cinco conteúdos de Matemática para ter sucesso no Enem

Obtenha sucesso no Enem conferindo os cinco conteúdos de Matemática mais recorrentes no exame!

Cinco tópicos fundamentais sobre radioatividade no Enem

Clique e confira cinco tópicos fundamentais sobre radioatividade que farão você acertar qualquer questão sobre esse assunto no Enem!

Dicas de Matemática para o Enem

Clique aqui e confira algumas dicas importantes sobre a prova de Matemática do Enem e que podem te ajudar a chegar mais perto de um bom resultado.

Equações no Enem

Saiba como resolver equações no Enem. Conheça as competências exigidas em questões do Enem que envolvem equações de 1º e de 2º grau.

Estatística no Enem

Entenda como o conteúdo de estatística é cobrado no Enem. Veja análise de questões sobre o tema. Estude os tópicos mais importantes de estatística para o Enem.

O que estudar de Física para o Enem?

Saiba quais são os conteúdos de Física que você não pode deixar de estudar para o Enem!

Probabilidade no Enem

Entenda o que é probabilidade. Veja como esse conteúdo é cobrado na prova do Enem. Conheça as características em comum que existem nas questões de probabilidade.

Quatro conteúdos básicos de Matemática para o Enem

Veja os quatro conteúdos básicos que certamente cairão no Enem e confira indicações de estudo para não se dar mal no exame!

Sistema de numeração decimal

Entenda o sistema de numeração decimal que utilizamos, bem como aprenda o que são classes e ordens.

Temas de matemática que mais caem no Enem

Clique aqui e conheça quais são os temas que mais caem na prova de matemática do Enem. Veja também quais são os conteúdos que merecem uma maior dedicação!

Termoquímica no Enem

Clique e torne sua preparação para o Enem ainda mais fácil com algumas dicas sobre como Termoquímica pode ser cobrada no exame!

Trabalho e sociedade nas questões do Enem

Saiba como é abordado o tema da relação entre trabalho e sociedade no Enem e fique afiado para acertar todas as questões em que tal relação aparecer.

Três erros comuns na regra de três

Clique para ver os três erros mais comuns cometidos na regra de três e a maneira de resolver exercícios sem cometer esses deslizes.