Raiz quadrada aproximada

Para calcular a raiz aproximada de um número devemos realizar a estimativa, que é o processo em que aproximamos valores numéricos.

A raiz quadrada aproximada também é chamada de raiz quadrada não exata
A raiz quadrada aproximada também é chamada de raiz quadrada não exata

A raiz quadrada aproximada de um número é calculada utilizando a estimativa, que é o processo pelo qual conseguimos aproximar valores numéricos. Adotamos esse procedimento para calcular raiz quadrada não exata, que ocorre quando o radicando não é um número quadrado perfeito. Lembre-se que:

  • Radicando é o número que fica dentro do radical, ou seja:

2 = Índice     2 = Expoente     n = Radicando     n = Raiz

  • Número quadrado perfeito é obtido pelo produto de um número por ele mesmo. Sendo assim, é todo e qualquer número que tem como expoente o número 2.

    Número           Número quadrado perfeito

    0           →           02 = 0

    1           →           12 = 1

    2           →           22 = 4

    3           →           32 = 9

    4           →           42 = 16

    5           →           52 = 25...

     

  • A raiz exata de um número é dada por um outro número que é quadrado perfeito.

Temos que 4, 9 e 16 são números quadrados perfeitos.

  • Para sabermos quando utilizar o processo de estimativa pra calcular raiz quadrada, basta o valor numérico referente ao radicando não ser um número quadrado perfeito. Veja alguns radicais que não são quadrados perfeitos:

    Radicais que não são números quadrados perfeitos

Como já trabalhamos os conceitos iniciais necessários para poder compreender melhor o que é raiz quadrada aproximada, podemos agora determinar o processo pelo qual é realizada a estimativa.

A aproximação para raiz quadrada adota o conjunto dos números racionais. Sendo assim, o valor numérico da raiz sempre será um número com uma ou mais casas decimais. O processo referente à aproximação de raiz quadrada pode ser caracterizado por três passos. Para determinar esses passos vamos calcular a raiz quadrada do número 7.

Não pare agora... Tem mais depois da publicidade ;)

Primeiro passo

Devemos definir o número quadrado perfeito que é antecessor e sucessor do número 7.

22 < 7 < 32

4 < 7 < 9

Segundo passo

Determinar o possível intervalo que será raiz de 7 e fazer a estimativa variando as casas decimais.

Conseguimos determinar que o número 7 está entre os números quadrados perfeitos 4 e 9. Então o número que será a raiz de 7 está entre 2 e 3. Agora devemos aplicar o processo da estimativa, para isso variamos os números refentes à casa decimal.

(2,1) . (2,1) = (2,1)2 = 4,41

(2,2) . (2,2) = (2,2)2 = 4,84

(2,3) . (2,3) = (2,3)2 = 5,29

(2,4) . (2,4) = (2,4)2 = 5,79

(2,5) . (2,5) = (2,5)2 = 6,25

(2,6) . (2,6) = (2,6)2 = 6,76

(2,7) . (2,7) = (2,7)2 = 7,29

Terceiro passo

Definir qual dos valores da estimativa é raiz

Quando o produto de um número por ele mesmo ultrapassa o valor do radicando que queremos encontrar, paramos de estimar esse número. O que precisamos fazer agora, no caso da raiz quadrada de 7, é decidir se a raiz é o número 2,6 ou 2,7. Por convenção, temos que a raiz de 7 é dada pelo menor valor. Sendo assim:

Para poder fixar melhor este conteúdo faremos mais um exemplo:

Calcule a raiz quadrada do número 21.

42 < 21 < 52

16 < 21 < 25

O número que será raiz de 21 está entre 4 e 5.

(4,1) . (4,1) = (4,1)2 = 16,81

(4,2) . (4,2) = (4,2)2 = 17,64

(4,3) . (4,3) = (4,3)2 = 18,49

(4,4) . (4,4) = (4,4)2 = 19,36

(4,5) . (4,5) = (4,5)2 = 20,25

(4,6) . (4,6) = (4,6)2 = 21,16

Como, por convenção, devemos pegar o menor número para raiz, temos que a raiz de 21 é 4,5.

Por: Naysa Crystine Nogueira Oliveira

Artigos relacionados

Cálculo de raízes não exatas por meio de fatoração

Clique para aprender como deve ser feito o cálculo de raízes não exatas por meio da fatoração e as propriedades dos radicais que garantem isso!

Multiplicação e divisão de radicais

Você sabe como fazer multiplicação e divisão de radicais com mesmo índice? E com índices distintos? Confira nossas dicas para esses dois casos!

Potências de i

Clique e aprenda o que é i dentro do conjunto dos números complexos. Aprenda a utilizar propriedades das potências e dos radicais para encontrar as potências de i. Saiba simplificar potências com expoente muito alto, de modo que o trabalho de calcular uma potência de i reduza-se a calcular i0, i1, i2 ou i3.

Propriedades da radiciação

Você tem dificuldade de efetuar cálculos com raízes? Conheça as propriedades da radiciação e aprenda a simplificá-los!

Radiciação

Clique aqui, saiba como representar uma radiciação e conheça suas propriedades. Aprenda também a diferença entre radiciação e potenciação.

Raiz quadrada

Clique aqui e entenda o que é e como calcular uma raiz quadrada. Conheça também as propriedades da raiz quadrada e estude exemplos de como aplicá-las.