Número Imaginário

Unidade imaginária
Unidade imaginária

As equações do 2º grau são resolvidas utilizando diversas técnicas, dentre as quais, a mais cogitada é através da resolução pelo método de Bháskara, que determina as raízes da equação utilizando os seus coeficientes.

Ao resolvermos uma equação do 2º grau utilizando o método de Bháskara, respeitamos algumas condições de acordo com o valor do discriminante. Se ele for maior ou igual a zero, continuamos a resolver a equação. Caso seja menor que zero, isto é, um número negativo, dizemos que a equação não possui raízes reais, em virtude de o valor do discriminante pertencer a uma raiz. A afirmativa condiciona-se ao fato de que dentre o conjunto dos números reais, não existe raiz quadrada de números negativos. Observe a seguinte equação:

O valor do discriminante é igual a um número negativo (? = −4). Esse tipo de equação ficou por muito tempo sem resolução, pois enquadrava-se na situação da raiz quadrada de um número negativo. Somente após um longo período de pesquisas e estudos, matemáticos anunciaram a resolução com o auxílio de um número imaginário. O mesmo era representado pelo símbolo e associava seu valor a −1. Observe como representar a raiz negativa da equação anterior:

Não pare agora... Tem mais depois da publicidade ;)




Dessa forma, as equações em que o valor do discriminante fosse um número negativo, seriam resolvidas aplicando as técnicas do número imaginário, obtendo assim, a raiz quadrada deste número negativo. Veja:





Com essa nova descoberta surgiu o conjunto dos números complexos, formados por uma parte real e outra parte imaginária. Por exemplo, as raízes da equação do 2º grau x² − 6x + 10 = 0, são x’ = 3 + i e x” = 3 − i. As raízes são números complexos onde a parte real de x’ é igual a 3 e a parte imaginária +i e a parte real de x” é 3 e a parte imaginária −i.

Exemplo

Vamos determinar as raízes da seguinte equação do 2º grau: −x² + 4x − 29 = 0.




As raízes da equação −x² + 4x − 29 = 0 são:

x’ = 2 − 5i
x” = 2 + 5i

Por: Marcos Noé

Artigos relacionados

Forma trigonométrica de um número complexo

Como escrever um número complexo na forma polar ou trigonométrica

Operações com números complexos na forma algébrica

Adição, subtração, multiplicação e divisão de números complexos

Operações com números complexos na forma trigonométrica

Multiplicação e divisão na forma polar

Plano de Argand-Gauss (plano complexo)

Conheça o plano de Argand-Gauss e aprenda a representar os números complexos nele. Veja também como calcular o módulo e o argumento de um número complexo.

Potências de i

Clique e aprenda o que é i dentro do conjunto dos números complexos. Aprenda a utilizar propriedades das potências e dos radicais para encontrar as potências de i. Saiba simplificar potências com expoente muito alto, de modo que o trabalho de calcular uma potência de i reduza-se a calcular i0, i1, i2 ou i3.