Curiosidades sobre os números

Algumas peculiaridades sobre os números mostram como a matemática pode ser divertida
Algumas peculiaridades sobre os números mostram como a matemática pode ser divertida

A matemática é viva, intensa, impressionante e nos faz pensar, refletir e nos divertir. Conhecer a face divertida da matemática, com suas curiosidades e revelações, é fundamental para despertar o gosto por essa ciência fascinante que geralmente é vista com maus olhos. Vejamos algumas curiosidades que envolvem os números e quanta coisa interessante deixamos de aprender por achar que diversão e matemática não se misturam.

1. Raízes de números quadrados perfeitos

Observe os seguintes pares de quadrados perfeitos:

144 e 441 (Note o que esses números apresentam em comum)

Extraindo a raiz quadrada de cada um deles, obtemos:

O que você consegue perceber?

Veja mais dois pares de quadrados perfeitos:

169 e 961

Extraindo as raízes de cada um, teremos:

Conseguiu observar o que ocorre?

Veja que 144 e 441, 169 e 961 são pares de quadrados perfeitos compostos pelos mesmos algarismos só que escritos de trás para frente. O interessante é que suas respectivas raízes também apresentam essa característica.

Observe mais um exemplo:

Os pares de quadrados perfeitos 14884 e 48841 apresentam os mesmos algarismos só que escritos de trás para frente.

Calculando a raiz quadrada de cada um, temos:

Suas raízes também apresentam os mesmos algarismos só que escritos em ordem inversa.

2. O número mágico 1089

Vejamos o motivo de esse número ser chamado de número mágico.

Escreva um número de três algarismos distintos (diferentes).

598, por exemplo.

Escreva este número de trás para frente e subtraia o menor do maior.

895 – 598 = 297

Agora, inverta também esse resultado e efetue a adição.

792 + 297 = 1089

Independente do número escolhido, teremos sempre como resultado final o número 1089. Mas lembre-se, só vale para números de três algarismos distintos. Se utilizarmos, por exemplo, 555 ou 988 a propriedade não será válida.

3. A forma pitagórica de calcular potências

Pitágoras foi um grande matemático que se dedicou ao estudo geométrico, trigonométrico e dos números. Dentre seus inúmeros estudos ele descobriu outra forma de se calcular potências com expoente 2. Depois de muito estudo e observação, notou que qualquer potência de números naturais do tipo n2 pode ser obtida somando os n primeiros números naturais ímpares. Veja como funciona:

a) 62 = 1 + 3 + 5 + 7 + 9 + 11 = 36
b) 72 = 1 + 3 + 5 + 7 + 9 + 11 + 13 = 49
c) 42 = 1 + 3 + 5 + 7 = 16
d) 52 = 1 + 3 + 5 + 7 + 9 = 25

Não pare agora... Tem mais depois da publicidade ;)
Por: Marcelo Rigonatto

Artigos relacionados

Ilusão de ótica

Descubra aqui o que é uma ilusão de ótica e como ela está relacionada à geometria. Acesse!

Números Romanos

Saiba como representar um número em algarismo romano.

Números figurados

Você sabe o que são os números figurados? Clique aqui e confira!

Números inteiros

Clique aqui e saiba quais são os números inteiros. Descubra como localizá-los na reta numérica e entenda como realizar operações entre eles.

Números irracionais

Aprenda o que são os números irracionais e saiba como diferenciá-los de um número racional. Veja também como são resolvidas as operações com esses números.

Números naturais

Conheça os números naturais, entenda o que é um antecessor e um sucessor de um número, bem como quais são os subconjuntos desse conjunto numérico.

Números primos

Entenda o que é um número primo. Aprenda a identificar números primos pelo crivo de Eratóstenes. Encontre a decomposição em fatores primos de um número.

Números racionais

Clique aqui e saiba quais são os números racionais. Descubra como realizar operações com esses números.

Potenciação

Entenda o que é a potenciação e como calcular a potência de um número. Veja também as propriedades dessa operação e seus casos particulares.

Propriedades da Potenciação

Operação entre Potências.