Classificação de um Sistema de Equações

Sistemas
Sistemas

Vamos abordar a classificação de um sistema de duas equações do 1º grau com duas incógnitas. Ao resolver os sistemas pelo método da adição ou da substituição, verificaremos três condições de classificação:

Sistema Determinado – SD
Sistema Possível Indeterminado – SID
Sistema Impossível – SI



Sistema Determinado

Um sistema de equações é considerado determinado quando apresenta uma única solução, isto é, no caso de um sistema de duas equações do 1º grau com duas incógnitas, há um único par ordenado. Observe:

Ao resolvermos o sistema  , obtemos uma única possível solução: (4, 3).






Sistema Possível Indeterminado

Esse sistema admite infinitas soluções, isto é, temos infinitos pares ordenados (x, y) que satisfazem ao sistema. Observe o sistema   , ele possui infinitas soluções.

Não pare agora... Tem mais depois da publicidade ;)




Observe que quando temos 0y = 0, podemos considerar qualquer valor para y que mesmo assim, a igualdade se mantém verdadeira.



Sistema Impossível

Nesse sistema dizemos que não existem soluções possíveis, isto é, ele não possui par ordenado que satisfaça à condição do sistema de equações. Na resolução do sistema ocorre uma condição inexistente na Matemática. Observe:

 

Por: PrePara Enem

Artigos relacionados

Discussão de um sistema linear

Análise das equações do sistema linear para realizar uma discussão quanto à classificação do conjunto solução desses sistemas.

Equações Algébricas Fracionárias

Restrições ao denominador de uma equação fracionária algébrica.

Equações biquadradas

Clique aqui e saiba o que são equações biquadradas. Descubra como determinar as suas raízes.

Problemas envolvendo equações

Aprenda a solucionar problemas envolvendo equações em sua resolução. Veja alguns exemplos e tire suas dúvidas!

Regra de Cramer

Clique aqui, conheça a regra de Cramer e descubra como utilizar esse método para descobrir a solução de um sistema linear.

Resolvendo Equações Exponenciais

Resolução de equações exponenciais.

Sistemas de Equações

Métodos Resolutivos de Sistemas de Equações.

Sistemas lineares com duas equações: método da substituição

Clique para aprender passo a passo a resolver sistemas lineares com duas equações pelo método da substituição.