As operações de adição e subtração de polinômios requerem a utilização de jogos de sinais, redução de termos semelhantes e o reconhecimento do grau do polinômio. A compreensão dessas operações é fundamental para o aprofundamento dos estudos futuros sobre polinômios. Vejamos como são realizadas as operações de adição e subtração com exemplos.
Adição de Polinômios.
Exemplo 1. Dados os polinômios P(x) = 8x5 + 4x4 + 7x3 – 12x2 – 3x – 9 e Q(x) = x5 + 2x4 – 2x3 + 8x2 – 6x + 12. Calcule P(x) + Q(x).
Solução:
P(x) + Q(x) = (8x5 + 4x4 + 7x3 – 12x2 – 3x – 9) + ( x5 + 2x4 – 2x3 + 8x2 – 6x + 12)
P(x) + Q(x) = (8x5 + x5 ) + ( 4x4 + 2x4 ) + ( 7x3 – 2x3 ) + (– 12x2 + 8x2 ) + (– 3x – 6x) + ( – 9 + 12)
P(x) + Q(x) = 9x5 + 6x4 + 5x3 – 4x2 – 9x + 3
Exemplo 2. Considere os polinômios:
A(x) = – 9x3 + 12x2 – 5x + 7
B(x) = 8x2 + x – 9
C(x) = 7x4 + x3 – 8x2 + 4x + 2
Calcule A(x) + B(x) + C(x).
Solução:
A(x) + B(x) + C(x) = (– 9x3 + 12x2 – 5x + 7) + (8x2 + x – 9) + (7x4 + x3 – 8x2 + 4x + 2)
A(x) + B(x) + C(x) = 7x4 + (– 9x3 + x3) + (12x2 + 8x2 – 8x2) + (– 5x + x + 4x) + (7 – 9 + 2)
A(x) + B(x) + C(x) = 7x4 – 8x3 + 12x2
Para a operação de adição valem as seguintes propriedades:
a) Propriedade comutativa
P(x) + Q(x) = Q(x) + P(x)
b) Propriedade associativa
[P(x) + Q(x)] + A(x) = P(x) + [Q(x) + A(x)]
c) Elemento neutro
P(x) + Q(x) = P(x)
Basta tomar Q(x) = 0.
d) Elemento oposto
P(x) + Q(x) = 0
Basta tomar Q(x) = – P(x)
Subtração de Polinômios.
A subtração é feita de maneira análoga à adição, mas deve-se ficar muito atento aos jogos de sinais. Vejamos alguns exemplos.
Exemplo 3. Considere os polinômios:
P(x) = 10x6 + 7x5 – 9x4 – 6x3 + 13x2 – 4x + 11
Q(x) = – 3x6 + 4x5 – 3x4 +2x3 + 12x2 + 3x + 15
Efetue P(x) – Q(x).
Solução:
P(x) – Q(x) = (10x6 + 7x5 – 9x4 – 6x3 + 13x2 – 4x + 11) – (– 3x6 + 4x5 – 3x4 +2x3 + 12x2 + 3x + 15)
P(x) – Q(x) = 10x6 + 7x5 – 9x4 – 6x3 + 13x2 – 4x + 11 + 3x6 – 4x5 + 3x4 – 2x3 – 12x2 – 3x – 15
P(x) – Q(x) = 13x6 + 3x5 – 6x4 – 8x3 + x2 – 7x – 4
Exemplo 4. Dados os polinômios:
A(x) = x3 + 2x2 – 3x + 7
B(x) = 5x3 + 3x2 – 2x + 1
C(x) = 6x3 + 5x2 – 5x + 8
Calcule A(x) + B(x) – C(x).
Solução:
A(x) + B(x) – C(x) = (x3 + 2x2 – 3x + 7) + (5x3 + 3x2 – 2x + 1) – (6x3 + 5x2 – 5x + 8)
A(x) + B(x) – C(x) = x3 + 2x2 – 3x + 7 + 5x3 + 3x2 – 2x + 1 – 6x3 – 5x2 + 5x – 8
A(x) + B(x) – C(x) = (x3 + 5x3 – 6x3) + (2x2 + 3x2 – 5x2) + (– 3x – 2x + 5x) + (7 + 1 – 8)
A(x) + B(x) – C(x) = 0 + 0 + 0 + 0 = 0
Aproveite para conferir nossas videoaulas sobre o assunto: