Área do polígono regular

A área do polígono regular, figura que possui lados e ângulos congruentes, é obtida pelo produto de seu semiperímetro por seu apótema.

Hexágonos e octógonos devem possuir todos os seus lados e ângulos com medidas iguais
Hexágonos e octógonos devem possuir todos os seus lados e ângulos com medidas iguais

Para que um polígono seja considerado regular, ele precisa cumprir três pré-requisitos: ser convexo, ter todos os lados congruentes e ter todos os ângulos internos com a mesma medida. Existe uma fórmula que pode ser usada para calcular a área de qualquer polígono regular, entretanto, é importante conhecer os procedimentos usados para chegar a ela, pois eles demonstram como podemos obter um mesmo resultado sem haver a necessidade de decorar essa fórmula.

Fórmula

A fórmula para calcular a área do polígono regular é a seguinte:

A = P·a
   2

Em que P é o perímetro do polígono e a é seu apótema. Note que o perímetro do polígono é dividido por 2 na fórmula. Metade de um perímetro é o que conhecemos como semiperímetro. Assim sendo, a fórmula usada para calcular a área de um polígono regular pode ser compreendida como:

O produto do semiperímetro do polígono regular pelo apótema.

Demonstração da fórmula

Como exemplo, usaremos o heptágono regular. Encontre o centro desse polígono e ligue esse ponto a cada vértice da figura, como o que foi feito na imagem abaixo:

Polígono regular de lado l

É possível mostrar que todos os triângulos obtidos por esse procedimento são isósceles e congruentes. Tomando o triângulo ABH como exemplo, os lados AH e AB são congruentes e o lado AB é a base do triângulo isósceles.

Nesse mesmo triângulo, construímos o apótema: segmento que vai do centro do polígono até o ponto médio de um de seus lados. O comprimento do apótema será representado pela letra a.

Como esse polígono é regular, o apótema é também a altura do triângulo isósceles. Assim, para calcular a área do triângulo ABH, poderemos usar a seguinte expressão:

At = b·h
       2

Como a base do triângulo é o lado do polígono regular e sua altura é o comprimento do apótema, temos:

At = l·a
       2

No caso do heptágono, note que existem sete triângulos isósceles congruentes. Então, a área desse polígono regular será:

A = 7·l·a
       2

Agora observe que, se substituirmos o heptágono por um polígono regular qualquer, com n lados, teremos, nessa mesma expressão, o seguinte:

Não pare agora... Tem mais depois da publicidade ;)

A = n·l·a
       2

Como o número de lados multiplicado pelo comprimento de cada um desses lados, no polígono regular, representa seu perímetro (P), concluímos que a fórmula para a área do polígono regular é:

A = P·a
      2

Assim, como mencionamos anteriormente, essa demonstração para chegar à fórmula é também uma técnica que pode ser usada para calcular a área do polígono regular.

Exemplo:

Calcule a área de um hexágono regular cujo lado mede 20 cm.

Solução: Para calcular essa área, será necessário saber a medida do apótema e do perímetro do polígono. O perímetro é dado por:

P = 6·20 = 120 cm.

Como a medida do apótema não foi dado, será necessário descobri-lo de alguma maneira. Para isso, primeiramente encontraremos mais informações sobre os triângulos que podem ser construídos a partir do centro do hexágono regular:

A soma dos ângulos internos de um hexágono é igual a 720°, pois:

S = (n – 2)180

S = (6 – 2)180

S = 4·180

S = 720°

Isso significa que cada ângulo interno do polígono mede 120°. Isso acontece porque todos os seus ângulos são iguais, uma vez que o polígono é regular, assim:

720 = 120°
6          

Como todos os triângulos construídos no interior do polígono são isósceles e congruentes, pode-se garantir que cada ângulo da base desses triângulos é igual à metade de 120, isto é, 60°. Também pode-se garantir que um triângulo isósceles que possui ângulos da base com 60° é equilátero, ou seja, possui todos os lados com a mesma medida. Assim, teremos as seguintes medidas no hexágono:

Área do hexágono

Para encontrar o apótema, basta usar o teorema de Pitágoras ou a Trigonometria.

Sen 60° = a
               20

√3 = a
  2    20

2a = 20√3

a = 203
      2

a = 10√3

Agora que sabemos o apótema e o lado, podemos calcular a área do hexágono regular:

A = P·a
      2

A = 120·103
       2

A = 12003
      2

A = 600√3 cm2

Por: Luiz Paulo Moreira Silva

Artigos relacionados

Classificação de polígonos

Conheça a classificação dos polígonos, isto é, confira os nomes que essas figuras recebem, bem como os tipos existentes.

Diagonais de um polígono convexo

Saiba como determinar o número de diagonais de um polígono

Funções e Relações Fundamentais da Trigonometria

Você conhece as relações fundamentais da trigonometria? E as relações decorrentes delas? Aprenda sobre cada uma delas aqui no Alunos Online!

Número pi

Conheça o valor, a origem e para que serve um dos mais famosos números matemáticos: o pi.

Perímetro

Você sabe o que é perímetro? Clique aqui para entender o que é e como se calcula o perímetro de figuras planas. Veja a diferença entre perímetro e área.

Polígonos

Veja tudo a respeito de polígonos: o que são, seus elementos e classificações, suas nomenclaturas e cálculo de área, perímetro e soma de ângulos internos e externos!

Polígonos convexos

Clique e aprenda o que são polígonos convexos, quais seus elementos mais importantes e suas propriedades mais usadas e conhecidas.

Polígonos regulares

Entenda o que são polígonos regulares e quais são as suas propriedades. Veja alguns exemplos. Conheça a diferença entre polígonos regulares e irregulares.

Propriedades do triângulo isósceles e do equilátero

Conheça algumas propriedades comuns aos triângulos isósceles e equiláteros, além de algumas diferenças básicas entre eles.

Soma dos ângulos externos de um polígono convexo

A fim de compreender os conceitos de ângulos e de polígonos convexos, devemos estudar as somas dos ângulos internos e externos de um polígono qualquer.

Soma dos ângulos internos de um polígono convexo

Fórmula para o cálculo da soma dos ângulos internos de um polígono

Teorema de Pitágoras

Descubra tudo sobre o teorema de Pitágoras: como funciona, como pode ser demonstrado e qual sua importância no estudo dos números irracionais e da Trigonometria.

Volume da pirâmide

Aprenda a calcular o volume da pirâmide e entenda o que essa medida é representa nesse sólido geométrico. Veja como questões envolvendo volume podem cair em vestibulares e no Enem e acompanhe soluções comentadas de alguns exemplos. Aprenda também a relação entre volumes da pirâmide e do prisma.

Área do retângulo

figuras planas, área de figuras planas, nomenclaturas de figuras planas, quantidades de lados de uma figura plana, relação dos lados com a nomenclatura de figuras, fórmula para o cálculo da área do retângulo, área do retângulo, área do quadrado.

Área dos polígonos

Clique aqui, descubra como calcular a área de um polígono convexo e saiba como encontrar a área de um polígono côncavo.

Áreas de figuras planas

Você sabe como encontrar a área das principais figuras planas? Clique aqui e descubra!

Ângulos

Clique para aprender o que são ângulos, como medi-los da maneira correta, para que serve um transferidor e alguns dos ângulos mais importantes.