Forças de Rotação

Forças de rotação
Forças de rotação

De acordo com a figura acima, é mais fácil fechar uma porta tocando-a perto do eixo de rotação ou longe do eixo de rotação?

É mais fácil soltar o parafuso da roda do carro com uma barra mais curta ou mais comprida?

Dependendo de onde uma força é aplicada, ela pode afetar o movimento de rotação de um corpo. Isso, de fato, percebemos no dia a dia, quando vamos abrir ou fechar uma porta de nossa casa (é mais fácil fechá-la empurrando-a longe do eixo de rotação), quando vemos um borracheiro usar uma chave de rodas (com cabo longo) para fazer a troca de pneus, etc.

Dessa forma, podemos perceber que o efeito de uma força no movimento de rotação é determinado pelo efeito da força (F) e também da distância (d) entre a força e o eixo de rotação.

Se tentarmos empurrar uma porta como mostra a figura 1, veremos que o efeito de uma força na rotação de um corpo é definido pelo produto força e distância (F . d). Esse produto é chamado de momento da força F em relação ao ponto O e é representado por MF:

MF = F . d

Vejamos o exemplo:
Suponhamos que um homem, como mostra a figura, usa uma barra de ferro AB para levantar um corpo C, de peso P = 1000 N, aplicando na extremidade B uma força F. Qual o valor da força F aplicada pelo homem?

Não pare agora... Tem mais depois da publicidade ;)

Resolução:

Os momentos das forças F e P são:
MF = F . (4,0)
MP = P . (0,4)        MP = (1000N) . (0,4m)         MP = 400 N.m

MF = MP, então temos:

F . (4,0) = 400
F = (400) / (4,0)
F = 100 N

Por: Domiciano Correa Marques da Silva

Artigos relacionados

Física do Hand Spinner

Você sabe qual é a Física envolvida no Hand Spinner? Conheça os elementos científicos por trás desse brinquedo que promete eliminar o stress!

Lâmpada estroboscópica

Saiba aqui o que são lâmpadas estroboscópicas e veja também alguns exemplos de fenômenos estroboscópicos que acontecem em nosso cotidiano.

Momento angular

Conheça o momento angular, uma das grandezas físicas mais importantes para o estudo da Dinâmica e Cinemática rotacional.