O microscópio de força atômica tem uma sonda que faz a varredura, e as deflexões são monitoradas por um laser, gerando sinais elétricos que são convertidos em imagens.
Conforme explicado com mais detalhes no texto Microscópio de tunelamento com varredura (STM), este foi o primeiro equipamento projetado para interagir com a superfície de um sólido e utilizar as correntes de tunelamento, bem como as vibrações e outros efeitos produzidos nas sondas, para visualizar imagens de átomos e moléculas nessas amostras.
Microscópio eletrônico de varredura JSM-6510 na exposição internacional de equipamentos analíticos e de laboratório na Rússia em 28 de abril de 2011 *
Com o avanço da tecnologia, outros microscópios ainda mais potentes foram desenvolvidos, como o Microscópio de Força Atômica (AFM - Atomic Force Microscope) ou, ainda, SFM (Scanning Force Microscope), que, além de permitir a visualização das imagens dos átomos, reproduz também seus movimentos com grande precisão, bem como transmite informações sobre a natureza do material, sua homogeneidade e natureza elétrica e magnética. Ele é como o nosso tato, que nos permite identificar não só a imagem do material, mas também sua consistência, se é duro ou mole, por exemplo.
As imagens são, na verdade, representações geradas por computador, não fotografias reais, mas servem para nos mostrar a aparência das superfícies de maneira extraordinária!
O Microscópio de Força Atômica foi inventado por Binning, Quate e Gerber. Seu princípio fundamental de funcionamento baseia-se na medida das deflexões de um suporte, cuja extremidade livre possui a sonda montada. A sonda pode estar em contato com a amostra ou não. No modo contato, o cantilever (pequena haste flexível) da AFM enverga-se na direção oposta à amostra. No modo não contato, o cantilever da AFM enverga-se na direção da amostra. Essas deflexões são resultado de forças de atração e repulsão.
Temos que, quando a ponteira com a sonda aproxima-se da amostra, ela é atraída em virtude das forças de atração, como as forças de van der Waals. Mas à medida que vai se aproximando, os orbitais eletrônicos da sonda e do material causam forças de repulsão. Conforme a distância entre elas vai diminuindo e ficando na ordem de alguns angstroms (distância característica de uma união química), as forças de repulsão e atração anulam-se, até que, por fim, as forças repulsivas dominam. Os movimentos da haste que refletem a forma da superfície podem ser monitorados utilizando-se um feixe de laser.
Representação didática do microscópio de força atômica (AFM)
A maioria das aplicações do Microscópio de força atômica e do Microscópio de tunelamento com varredura é igual, tais como o estudo de superfícies de metais, de semicondutores e de materiais biológicos. Mas o Microscópio de força atômica pode trabalhar também em meio líquido e em ar. Além disso, ele pode ser usado em baixas temperaturas e também para estudar todo tipo de material isolante, e não só materiais condutores. Isso porque ele utiliza a força atômica no lugar da corrente de tunelamento para gerar imagens, o que é interessante, por exemplo, no estudo de materiais biológicos congelados.
O Microscópio de força atômica pode ser usado também para gerar imagens de circuitos integrados, componentes ópticos, raios x, elementos armazenados em meios de comunicação e outras superfícies críticas.
O Microscópio de Força Atômica é, até o momento, o microscópio mais potente do mundo, mostrando-nos imagens fantásticas, como a da superfície de uma amostra de silício apresentada abaixo:
Imagem de microestrutura de Silício gerada com Microscópio de Força Atômica (AFM)
* Imagem com direitos autorais: Dikiiy/Shutterstock.com.
Videoaula relacionada: