Podemos realizar as operações de potenciação e radiciação de radicais assim como fazemos com outros números.
Um número contido dentro de um radical será sempre um número. Mesmo que o resultado seja um número racional ou irracional, ainda assim será um número. Por essa razão, é possível realizar soma, subtração, multiplicação e divisão de radicais, bem como podemos aplicar a potenciação e a radiciação.
Quando aplicamos a potenciação a um número qualquer, nós multiplicamos a base por ela mesma quantas vezes indicar o expoente, isto é, se a é a base e n é o expoente, então an = a.a.a.a.a.a...a (n vezes). Nas operações com radicais, a ideia é a mesma. Veja a seguir alguns exemplos:
Observe como é feita a potenciação de radicais
Resolver uma potência em que a base é um radical equivale a fazermos simplesmente:
Mas e se o radicando (o número dentro da raiz) já possuir um expoente? Nesse caso, a resolução ocorrerá de forma análoga, mas há um detalhe importante: o expoente da potência será multiplicado pelo expoente do radicando, isto é,
Veja como fazemos uma potenciação de radicais cujo radicando já possui um expoente
Assim como podemos realizar a potenciação de radicais, também podemos aplicar a radiciação. Para realizá-la, sempre encontraremos um radical “dentro” de outro radical, expressão essa que não nos é tão comum. Para simplificar esse cálculo, precisamos reduzi-lo a um único radical. Para isso, basta multiplicar pelos índices envolvidos. Genericamente, temos:
Para calcular a radiciação de radicais, basta multiplicar os índices envolvidos para ficarmos com apenas um radical