Paralelismo

Paralelas

Considere duas retas distintas e paralelas r e s, como mostra a figura.

Temos que:

r ∕∕ s ↔ tg α1 = tg α2 ou mr = ms

Isso quer dizer que duas retas são paralelas se, e somente se, seus coeficientes angulares forem iguais.

Exemplo 1. Verifique se as retas r: y = 3x – 2 e s: 6x – 2y + 5 = 0 são paralelas.
Solução: Precisamos determinar o coeficiente angular das retas r e s.

Vamos determinar o coeficiente angular da reta r:

Como a equação da reta r está na forma reduzida, fica fácil ver que mr = 3.

Agora vamos determinar o coeficiente angular da reta s.
6x – 2y + 5 = 0
2y = 6x + 5
y = 3x + 5/2

Daí, vemos que ms = 3

Como mr =ms =3, podemos afirmar que r // s.

Exemplo 2. Determine a equação da reta s que passa pelo ponto P(3, 5) e é paralela à reta t de equação y = 5x – 7.
Solução: Como s // t → ms = mt = 5

Conhecemos um ponto da reta s e seu coeficiente angular. Basta utilizarmos a fórmula:
y – y0 = ms(x – x0)
y – 5 = 5(x – 3)
y – 5 = 5x – 15
y = 5x – 10 → equação da reta s.

Exemplo 3. Para quais valores de k as retas 3x + 2y – 1 = 0 e kx – 3y + 1 = 0 são paralelas?
Solução: Para as duas retas serem paralelas, os seus coeficientes angulares devem ser iguais. Assim, vamos determinar o coeficiente angular das retas em questão.

Daí segue que:

Por: Marcelo Rigonatto

Assista as nossas videoaulas:

Artigos Relacionados

Últimas Aulas

América Latina
Pré-Enem | Desequilíbrios ambientais
Reações de análise ou decomposição
Questões étnico-raciais: uma análise a partir de Pantera Negra
Todas as vídeo aulas

Versão completa