Cálculo de raízes não exatas por meio de fatoração

O cálculo de raízes não exatas pode ser feito por meio da fatoração, fato garantido pelo teorema fundamental da aritmética e propriedades dos radicais.

Raízes são facilmente resolvidas com fatoração

Uma das estratégias mais usadas para calcular raízes é a fatoração. Para tanto, utiliza-se o teorema fundamental da aritmética e algumas propriedades de raízes. Assim, o radicando é decomposto em fatores primos, que são reagrupados para facilitar os cálculos. Antes de falarmos sobre o cálculo de raízes em si, precisamos relembrar o teorema fundamental da aritmética e algumas propriedades.

Teorema fundamental da aritmética

Todo número inteiro pode ser decomposto em uma multiplicação em que todos os fatores são primos. Essa decomposição é única, exceto, é claro, pela permutação de seus fatores. Os números inteiros que aparentemente não podem ser decompostos em fatores primos são os próprios números primos. Contudo, é possível dizer que a decomposição em fatores primos de um número primo tem como resultado um único fator, que é o próprio número.

Exemplos:

a) 192 = 25·3

b) 75 = 3·52

c) 300 = 2·3·52

Propriedades dos radicais para o cálculo de raízes

Para o cálculo de raízes por meio de fatoração, são utilizadas as duas propriedades seguintes:

A primeira garante que a raiz do produto é igual ao produto das raízes, e a segunda afirma que, quando o índice do radical é igual ao expoente do radicando, o resultado da raiz é a base do radicando.

Cálculo de raízes não exatas por meio fatoração

Segue o passo a passo para calcular raízes não exatas (e exatas também) por fatoração:

Passo 1: Fatore o radicando

Se o radicando de uma raiz for um número inteiro, é possível reescrever esse número como produto de fatores primos, como garante o teorema fundamental da aritmética.

Passo 2: Reagrupe os fatores primos

Feito isso, reescreva os fatores primos em fatores cujo expoente seja igual ao índice do radicando.

Passo 3: Aplique a propriedade I

Cada fator precisa ficar dentro de um radical para que a segunda propriedade seja aplicada.

Passo 4: Aplique a propriedade II

Esse passo fará com que o radical seja simplificado à raiz de algum fator primo. Observe que é sempre mais fácil calcular a raiz de um fator primo do que de um número composto maior que ele.

Passo 5: Cálculo numérico

Se necessário, faça o cálculo numérico da raiz restante e multiplique todos os resultados.

Exemplo:

Sabendo que a raiz quarta de 2 é 1,19, calcule a raiz quarta de 2592.

Solução:

Pelo passo 1, devemos fazer a fatoração de 2592:

2592|2
1296|2
  648|2
  324|2
  162|2
   81|3
   27|3
     9|3
     3|3
   1|

2592 = 25·34

Pelo passo 2, devemos reescrever os fatores primos com expoentes iguais a 4. Se sobrarem fatores insuficientes para isso, devemos escrevê-los com o maior expoente possível:

2592 = 25·34 = 24·2·34 = 34·24·2

Pelo passo 3, substituímos 2592 pela sua fatoração dentro do radical e fazemos o seguinte:

Já o quarto passo garante a simplificação dos dois primeiros fatores. Observe que já é possível substituir o último fator pelo seu valor numérico, que é 1,19.

Por fim, note que o quinto passo também já foi aplicado na imagem acima.

Por: Luiz Paulo Moreira Silva

Assista as nossas videoaulas:

Artigos Relacionados

Últimas Aulas

Por que a gasolina aumenta tanto no Brasil?
Transgênicos
Introdução à Química Orgânica
Fenomenologia de Merleau-Ponty
Todas as vídeo aulas

Versão completa